Application of neural fuzzy network to pyrometer correction and temperature control in rapid thermal processing

نویسندگان

  • Jiun-Hong Lai
  • Chin-Teng Lin
چکیده

Temperature measurement and control are two difficult problems in the rapid thermal processing (RTP) system. For many applications such as rapid thermal processing chemical vapor deposition (RTCVD) [1] and rapid thermal oxidation (RTO) [2], large changes in wafer emissivity can occur during film growing, leading to erroneous temperature measurements with a single wavelength pyrometer. The error in the inferred temperature will affect the temperature control of the RTP system. In order to correct the temperature reading of the pyrometer, a neural fuzzy network is used to predict the emissivity changes for the compensation of measured temperature. As for the temperature control, to overcome ill performance of the temperature tracking system due to the inaccuracy of the identified model, another neural fuzzy network is used in the RTP system for learning inverse control simultaneously. The key advantage of neural fuzzy approach over traditional ones lies on that the approach does not require a mathematical description of the system while performing pyrometer correction and temperature control. Simulation results show that the adopted neural fuzzy networks can not only correct the pyrometer reading accurately, but also be able to track a temperature trajectory very well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Recurrent Fuzzy Neural Network Controller Design for Speed and Exhaust Temperature of a Gas Turbine Power Plant

In this paper, a recurrent fuzzy-neural network (RFNN) controller with neural network identifier in direct control model is designed to control the speed and exhaust temperature of the gas turbine in a combined cycle power plant. Since the turbine operation in combined cycle unit is considered, speed and exhaust temperature of the gas turbine should be simultaneously controlled by fuel command ...

متن کامل

Application of Pattern Recognition Algorithms for Clustering Power System to Voltage Control Areas and Comparison of Their Results

Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...

متن کامل

Application of Pattern Recognition Algorithms for Clustering Power System to Voltage Control Areas and Comparison of Their Results

Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...

متن کامل

Prediction of the changes in physicochemical properties of key lime juice during IR thermal processing by artificial neural networks

Thermal processing of the key lime juice leads to the inactivation of pectin methylesterase (PME) and the degradation of ascorbic acid (AA). These changes affect directly the cloud stability and color of the juice. In this study, an artificial neural network (ANN) model was applied for designing and developing an intelligent system for prediction of the thermal processing effects on the physico...

متن کامل

Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature

Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Fuzzy Systems

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1999